Not to be taken away

香港中文大學

版權所有 不得翻印 Copyright Reserved

The Chinese University of Hong Kong

二〇一五至一六年度 上學期科目考試 Course Examination 1st Term, 2015-16

科日編號及名稱							
Course Code & Title	:	MMAT5000 An	alysis I				
時間			小時		分鐘		
Time allowed	:	2	hours	30	minutes		
學號				座號			
Student I.D. No.	:			Seat No.:			

Time allowed: 2 hr 30 min

Total points: 50

- 1. Let $f:(0,\infty)$ be a function defined by $f(x)=\frac{1}{x^2}$.
 - (a) (i) State without proof the Mean Value Theorem.
 - (ii) Show that f is uniformly continuous on $[1, \infty)$. (Hint: Show that f is a Lipschitz function on $[1, \infty)$.)
 - (b) Show that f is not uniformly continuous on $(0, \infty)$.

(10 Points)

2. Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Prove that for any $\epsilon>0$, there exists a continuous piecewise linear function $g:[a,b]\to\mathbb{R}$ such that $|f(x)-g(x)|<\epsilon$ for all $x\in[a,b]$.

(Hint: You may use the fact that f is uniformly continuous on [a, b].)

(6 Points)

3. Let $f:[0,2]\to\mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1; \\ 2 & \text{if } 1 \le x < 2; \\ 3 & \text{if } x = 2. \end{cases}$$

Prove that f is integrable on [0, 2].

(5 Points)

4. Let $f:[a,b]\to\mathbb{R}$ be integrable, and let P be an even partition of [a,b] given by

$$P = \{x_0, x_1, \dots, x_n\}, \qquad x_i = a + \frac{(b-a)i}{n} \text{ for } i = 1, 2, \dots, n.$$

Let $h_n = \frac{b-a}{n}$ and define the mid-point rule by

$$M_n(P, f) = h_n \sum_{i=1}^n f(a + (i - \frac{1}{2})h_n).$$

Show that $\lim_{n\to\infty} M_n(P,f) = \int_a^b f$.

(5 Points)

5. Let $f:[a,b]\to\mathbb{R}$ be a nonnegative function.

Suppose that f is integrable on [a, b] and $\int_a^b f = 0$.

- (a) Give (without proof) a counterexample that f is not the zero function.
- (b) If it is further known that f is continuous on [a, b], must f be the zero function? Why?

(8 Points)

6. Let $d: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ be a function defined by $\left| \ln \left(\frac{y}{r} \right) \right|$.

Prove that d defines a metric on \mathbb{R} .

(8 Points)

7. Let X be the vector space of bounded sequences in \mathbb{R} and $\|\cdot\|: X \to \mathbb{R}$ be a function defined

$$\|\{x_n\}\| = \sup\{|x_1|, |x_2|, \cdots\},\$$

where $\{x_n\}$ is a sequence in \mathbb{R} .

Prove that $\|\cdot\|$ defines a norm on X.

(8 Points)

- 8. (Bouns Question) Let $f:[0,1]\to\mathbb{R}$ be a function defined by the following:
 - f(0) = f(1) = 1;
 - If 0 < x < 1 and x is irrational, then f(x) = 0;
 - If 0 < x < 1 and $x = \frac{m}{n}$ where m and n are natural numbers with gcd(m, n) = 1, then $f(x) = \frac{1}{n}$.
 - (a) Prove that f is discontinuous at every rational number in [0,1].
 - (b) Prove that f is continuous at every irrational number in [0, 1].
 - (c) Prove that f is integrable on [0,1].

(10 Points)